
Distributed Image-Sensor Web Management for
Bandwidth Constrained Environments

Daniel Marconett Skylar Bemus Samuel Johnson Ryan Jarvinen Daniel Potter
dmarconett@gmail.com nautskye@gmail.com samueljohnson@acm.org ryan.jarvinen@gmail.com potterd64@gmail.com

California State University, Sacramento, California 95819

Lawrence C. Freudinger
l.freudinger@dfrc.nasa.gov

NASA Dryden Flight Research Center, Edwards, California 93523

Remote and in situ observation is an essential ingredient of understanding of our
Earth and its processes. Observed data greatly improve the ability of Earth and
Environmental scientists to model and predict various events and patterns which
transpire in the environment and around the globe. Unmanned aircraft, with
onboard instruments which enable such data collection, are an essential part of the
future remote observing infrastructure. These platforms will contain imaging
instruments capable of producing far more data that can be transferred to decision-
makers for near real-time use in a cost-effective manner although narrowband
communications can be assumed. In this paper, we discuss a prototype system to
manage metadata for mobile cameras similar to systems that could be installed on
suborbital Earth observation platforms. Network cameras simulate a distributed
system of imagers on one or more platforms. A software system is described that
integrates the webcam imagery with time-varying metadata. This paper offers an
overview of design and performance of this system in a benign communication
environment, and discusses data management challenges as it applies to
implementation of such a system on unmanned airborne observation platforms for
Earth science missions.

Key Terms

KML = Keyhole Markup Language
OTH = Over-the-Horizon network communications
RBNB = Ring Buffered Network Bus by Creare
UAV = Unmanned Aerial Vehicle
XML = Extensible Markup Language

Introduction

Images from digital cameras are two-dimensional observations of a small part of a three-dimensional
physical world that varies in time (four dimensions). Webcams add repetition to the observations. If
attribute data such as camera location, orientation, and field of view were available, it would be possible
to project webcam images into a three-dimensional simulated world that varies in time. In many scenarios
of interest here, the cameras themselves could be moving around, so we recognize that some of the
aforementioned attributes themselves might also vary in time. Given a network-distributed set of possibly
mobile or articulated imaging sensors such as webcams, along with the ability to acquire the required

 1

time-varying attribute data (or metadata), it should be possible to combine these images into a common
visualization environment. As with other forms of data fusion, the value of effectively presenting an
integrated whole should be greater than the sum of its parts.

 Essentially, we are interested here in constructing practical imaging sensor webs for various synthetic
vision applications. Whereas traditional and commercially available cameras typically act as passive
producers of data today, future systems of cameras will increasingly need to intelligently produce more
useful data. Examples of the types of systems envisioned here include intelligent video security systems
for large and small interior and exterior spaces, futuristic three-dimensional video teleconferencing
centers, and synthetic vision systems for vehicles like aircraft and cars. We can categorize these systems
into three application classes:

Roaming Observation
 This application class is characterized by one or more imaging instruments on a mobile vehicle with at
least occasional network connectivity via one or more data links. We assume availability of deep storage
capacity for still and video imagery and the availability of embedded computing resources for relevant
components of our application.

Interior space observation
 This application class represents observation of interior spaces, and is characterized by multiple
cameras with a high degree of overlap in their field of view. With a high degree of overlap, 3-D scene
reconstruction, synthetic aperture (enhanced focusing ability) and freeze-frame 3-D video
teleconferencing is possible.

Exterior space observation
 In contrast to remote observation from an aircraft and in contrast to the heavily redundant scene
coverage of an interior space, this application class tends to consist of geographically separated groups of
possibly well-covered areas with large amounts of coverage gaps in between. In general this class of
application is monitoring environments where some images may but not necessarily overlap. Given a
single camera in each of n locations, this application class might be (ironically) the traditional video
teleconferencing application, security monitoring of urban regions, residential security monitoring, or the
traffic camera network we sometimes see on the evening news. Object tracking across the set of imagers
(through time and space) is a common goal in this application class.

 One particular application in the roaming observation class that is useful to the airborne science
community and illustrative of certain technical challenges involves one or more autonomous unpiloted air
vehicles (UAVs). Multiple cameras on a vehicle collect data useful to remote terrestrial decision-makers
(airborne science researchers or platform operators), but the wireless communication links may be
intermittent, and when those links are operating nominally they do not provide adequate bandwidth to
move more than a small fraction of imagery acquired.

 A specific example of this would be an UAV searching the Antarctic coast in winter for Emperor
penguins. With geosynchronous satellites not visible and line-of-sight telecommunications with human-
inhabited ground stations not feasible, the only available data links are either very low bandwidth (such as
Iridium) or highly intermittent (TDRSS satellite or other relay scenarios could be available for a fraction
of a given flight.). In order for terrestrial researchers to effectively use the imagery for situational
awareness and decision support in this scenario, it is desirable to have the ability to “TiVo” compressed
versions of the source imagery in a manner where the imagery is automatically integrated with live
weather and previously known terrain data sources.

 2

 Analysis of these types of problems leads to a few observations: Metadata and image data in a sensor
web do not in general come from the same place. A camera does not know where it is or where it’s
pointed. Metadata for the images is time varying, and online solutions must dynamically marry image
data with its metadata. Effective bandwidth management involves buffer management on both sides of an
unreliable data link. Effective bandwidth management for online and near realtime use also requires the
ability to implement flexible on-the-fly processing, possibly at many geographically disparate locations,
and likely on both sides of any unreliable or otherwise constrained data link. In the UAV example
discussed above, random access of time-indexed cached data, coupled with compression and decimation
represent some of the required processing, but more sophisticated processing can also be envisioned and
may be required as the total number of source image pixels increases.

 Clearly a general solution is a formidable undertaking. The project discussed in this report is a modest
effort to prototype a partial solution. This prototype focuses on the dynamic marriage of data and
metadata and leverages existing tools wherever possible. The objective of this partial solution is to
aggregate multiple webcams with their respective metadata into a single geographic reference frame, and
demonstrate the ability for those images to automatically move in this reference frame based on dynamic
updates to the metadata. The remainder of this report discusses the resulting system architecture and
provides an initial look at performance and discusses, where possible, known performance bottlenecks
and recommended approaches to follow-up activity.

 3

Project Background

 The I-Scan project was conceived as a project to fulfill academic requirements for undergraduate
computer science coursework at Sacramento State University. The focus of the project is derived from
ongoing research and development within NASA's suborbital Earth observing science program. Among
the needs of the Earth science communities are flexible and affordable operations leveraging interactive
(network-oriented) communications with instruments carried in piloted and unpiloted vehicles deployed
potentially anywhere on the planet. The Over-the-Horizon Networks (OTH) component of the Earth
Science Capabilities Demonstration Project is interested in maturing affordable, disruption tolerant, and
network-centric communications components as well as the application-layer tools and services that
accelerate the emergence of useful sensor web capabilities that enable greater productivity for researchers
with airborne science instruments. The project targets a core operational capability by 2010 that
facilitates emergence of increasingly intelligent observation instruments.

 Aligned with this technology vision, it turns out that within the international Earth science communities
there is a concerted effort to conduct research in the Earth's polar regions in 2007-2008. The first
designated International Polar Year in 1882-83 and all similar initiatives since have all had a major
influence on growing our understanding of Earths processes. One of the projects being considered was
the use of UAVs to autonomously patrol coastal Antarctica in the winter night to study one of the planets
leading indicator species on global climate change, the Emperor penguin.

 A UAV with imaging systems - visible and infrared cameras, synthetic aperture radars, etc, could easily
generate many gigabytes of useful imagery during a typical flight. Unfortunately, it's not possible to
move all that data in real-time back to decision-makers in their (significantly warmer!) laboratories. The
only continuous connectivity is low bandwidth. While studying this operations challenge, the concept of
being able to scroll back and forth through time on thumbnails and "filmstrips" of the onboard imagery
was noted as an enabling capability. It is this scenario that precipitated the idea for the I-Scan project
discussed here.

Figure 1 - End Use Implementation

 4

Disruption and delay-prone links demand the system to be tolerant of data starvation for substantial
periods of time. This fact presents challenges when designing a video-on-demand network computing
system. This constraint is necessary since implementation is to occur onboard a NASA Unmanned Aerial
Vehicle (UAV) in the particularly harsh environment of Antarctica. The only feasible communications
infrastructure to leverage for such a mission in this part of the world is the Iridium satellite constellation,
which is significantly limited, 2.4kbps to be exact. Thus, topology and link control are crucial to optimal
system performance. Figure 1 is an over view of the desired end-use implementation and system
structure.

 5

System Architecture

 The main task of this project is to create this sensor monitoring application as an interoperable part of
Creare’s RBNB software distribution, and to augment the built-in capabilities of this system for NASA
Earth Sciences. We are doing so by utilizing the basic functionality provided by the Creare RBNB API.
Our goal is to create a more defined, extensible, and robust version of this application to support a
hierarchical structure of sensors, or more abstractly, data acquisition devices, which will monitor multiple
geographically distributed locations and broadcast this information to a central collection server. Figure 2
is a graphical overview of this project’s multi-tiered distributed network architecture.

Figure 2 - System architecture

 The first tier is comprised of the observation locations, sensors, and their respective local ring buffer
servers. Each observation location corresponds to an aforementioned “monitoring field” in figure 1.
Essentially, each source location can be thought of as an independent UAV, monitoring its own respective
observation location. Alternatively, the UAV can be abstracted as a “source location” or a “sensor
collection” for the purposes of system development.

 The middle tier is the central server, which services end-user requests and receives data broadcasts
from source locations. The central server will have knowledge of the sensor collections at the various
locations as well as the types of sensors that each collection is composed of. Furthermore, it is to have full
knowledge of the channel mapping and system/metadata configuration and tagging at each location.

 The last tier is the observer(s), who make(s) requests of the central server over the internet for relevant
data, and viewing them via a media player. This will be comprised of an existing prototype media player
client application which is included in the standard RBNB package distribution, including Google Earth.

 6

A. Data Acquisition Layer

 The fundamental purpose of a sensor web is to facilitate data acquisition. Each monitoring field (or
data source location) is observed by a sensor web in our architecture. The testbed and system upon which
it runs is specifically designed to monitor and process data from multiple geographically distributed
monitoring fields, and have them accessible to end-users via the internet. The data acquisition layer is
comprised of a local monitoring application which acquires data from imaging and metadata sensors and
feeds them to the local RBNB caching mechanism.

 As with the Central Server layer, the main data store for the data acquisition application at each sink
location is the RBNB. At each source location, LocalMonitor polls the local sensors for updated
information. One of our tasks was to create this LocalMonitor application by defining an XML data
hierarchy which defines the system configuration and metadata dependencies. The XML files which
conform to this predefined hierarchy are used by the monitoring application as a configuration file,
specifying the local sensors from which data will be acquired. Additionally, RBNB’s at source locations
communicate with the Central Server via TCP/UDP connection(s).

B. Central Data Staging Layer

 The Central Server of this system acts as a data-staging area, whereby the end-user can query and
receive relevant data based on the location and camera(s) specified. The ability to view multiple image
sources simultaneously depends on which end-use application the client is running locally. This layer’s
main data store mechanism is the Ring Buffer Network Bus (RBNB) Data Turbine. The Central Server
accepts client requests over http through the various end-user applications mentioned in the previous
section.

Figure 3 - Component Process Interactions

 7

The Central Server is the repository of all sensor data from all locations, stored in channels which
correspond to the sensor which produced the data. The ith location has n(i) channels. The central location
therefore has m channels, where

m = . ∑
1

)(
n

i

in
=

Each source location ring buffer i will have n(i) sensors and n(i) channels, each channel corresponding to
a particular sensor, the Central Server ring buffer will have “m” channels, where m is equal to the sum of
the total number of sensors of all the distributed source locations. Furthermore, the data in these
“channels” are stored in time oriented fashion. Each channel has an associated data type which
corresponds to the data stored in the channel, i.e. image data is stored as byte arrays, each one
representing an image from a particular camera. Each camera, and for that matter, each sensor, has its
own channel.

C. End-User/Observer Layer

 This layer is comprised of several possible media applications which will reside on the client machine.
These applications are already existing prototypes and will be leveraged to view the image data as the
main foci of this project are the issues of system configuration, data classification, data acquisition, and
network topology concerns. These applications are rbnbAVCP, rbnbPlot, and Google Earth.

 The Audio-Video Capture and Display (AVCP) application from Creare is a media player which is
capable of capturing audio and (more importantly for our purposes) video as a stream of jpeg files and
allow the viewer to stream back and forth through time in a time-oriented fashion. The end-user merely
connects to the appropriate ring buffer server and selects the desired channel to view the collection of
images as a video stream.

 The rbnbPlot application, also from Creare, provides a mechanism by which the user can view
numerical and/or image data, also in a time-oriented fashion. Again, the end-user merely connects to the
appropriate ring buffer and selects the desired channel(s) from the structure to view through the plot
interface. This application is suited to view multiple channels at once and is thus uniquely suited for the
viewing of multiple image devices, connected to our system, in tandem.

 The final (and most important to this project) end-user application mentioned is Google Earth. Creare
has provided a plug-in whereby any jpeg imagery can be fused with the Google Earth application relative
to its GPS coordinates. The plug-in – also a prototype – helps perform data fusion of images and
metadata for display in the Google Earth visual browser. The additional functionality introduced by this
plug-in will allow an end-user to fly to any location near the earth, watch live data, and scroll back and
forth through time. The optimal functionality would be to click on an aircraft while in transit, virtually go
inside of it, and look out through the windows via onboard cameras. The I-SCAN Project is an initial
framework for testing this hypothesis of using network cameras to achieve temporally sensitive virtual
visits of the monitoring field. The data interaction diagram below conveys the basic process of .kml file
request and generation with respect to this three-tiered testbed architecture.

 8

Figure 4 - KML Generation

 The bidirectional communication for KML file generation is handled strictly by the central server. The
only other task for the local sensor collection(s) to handle (besides that of periodically broadcasting the
latest sensor data) is that of creating a KML template which corresponds to the sensor hierarchy of the
XML configuration file at the local level. This happens a single time, at initial system configuration, were
shortly after creation, the template is dedicated its own channel, and broadcasted to the central server. It is
the central server’s job to concatenate these templates into a single master KML file which can then be
accessed over the internet by end-users through the Google Earth application.

 Moreover, the ability of this Google Earth application to view data based on a desired time of
acquisition, in addition to the functionality of viewing the latest data, is governed by the ‘Timedrive’
plug-in provided by Creare. Timedrive provides a mechanism by which an end-user can move through
archived data by specifying the desired time and interval through a web browser interface before
acquiring the imagery/scalar data. In essence, Timedrive serves as a proxy between the central server and
applications acquiring data over the web from the central server, such as Google Earth. Unless otherwise
requested, the base case for this interaction is viewing the data in real-time. The afore mentioned time-
sensitive request capability enabled by Timedrive provides a hitherto unrealized potential of Google Earth
as an application which not only can be used for real-time data capture/observation, but also observation
based on a specified fourth dimensional time aspect, which is a value added objective of this project

 9

Figure 5 - Google Earth Sensor Web Observation

 Figure 5 displays the user interface view of a particular monitoring location named “Demo.” The
metadata visible in the “balloon” window is that of altitude, latitude, and longitude of that particular
location. The image overlay is an image sensor’s view of that particular intersection, which is updated
through the Timedrive proxy server which residing on the central server. The KML file data which makes
this interface possible is viewable in the left pane of the application, and is named “a(2).kml.” The
intersection image overlay is camera3.jpg and is also viewable in the left pane under the “Demo” location
directory.

 10

Data Management

A. Intelligent Management

 Three key components of intelligent management are autonomy, survivability, and interoperability.
Autonomy is applicable to an intelligent data acquisition system in that, if the acquisition process is being
automated, priority must be granted to the agent which is directing data delivery between system
components and the edges of the system for the end-user. Survivability is key to this automated system in
that critical real-time data acquisition must take place at regular intervals, in a variety of environments,
otherwise the data loses much of its value. Interoperability is the crucial piece of the puzzle whereby all
components of the system are allowed to interact successfully. This is especially important when dealing
with heterogeneous internetworking and multiplatform distributed systems such as ours. A key point of
successful interoperability in our case is not only the compatibility of the system components, but the
flow of data between these components and how this data is interpreted, especially when it pertains to
how the data is categorized. These interactions are characterized at the system level by the abstract flow
diagram below.

Figure 6 - System Data Flow

 While the above data flow mapping depicts the interactions of the various components at the logical
level, there is an explicit semantic relationship between the entities and data which is exchanged between
them. This relationship is defined by the hierarchy of the XML configuration file at the data acquisition
layer, and defines whether or not the scalar data from other local sensors (such as temperature, air speed,
GPS, etc) will be visible within the Google Earth application. Since the non-image sensors produce scalar
values over time, and the main focus of this project is implementation of an imaging sensor web, we have
found it convenient to define the data from these secondary sensors as ‘metadata.’ In the following
section, we provide additional commentary on metadata and how exactly it fits into the scheme of a given
local sensor web.

 11

B. Data Hierarchy and Metadata

 The collection of data by itself is generally without context. Metadata provides context for data. With
respect to a distributed sensor web, the metadata could provide such information as geographical location
of the sensor, the relationship of that sensor's data collection, the environment in which the sensor resides,
and the time each sensor provides newly acquired data. Image sensors can be supplemented with
important metadata parameters. Besides geospatial metadata, it is beneficial to record the orientation of
the camera's view, specifically pitch, yaw, and roll. Additionally, the angle of the lens’ parallax could be
important when the cameras are at a significant distance from their target.

 By using location and view-related metadata, our system is able to display image data from many
sources on a single shared display (Google Earth). Without this metadata, it would not have been
possible to place the images in their correct geospatial locations. The diagram below depicts the XML
schema hierarchy as a tree.

Figure 7 - Schema Hierarchy

• Starting at the root of the tree in the above diagram is the tag "collection". This tag has a three

attributes: "name" is a unique name given to a specific collection of sensors, “destURLPath” is
the path to the local RBNB server, and “static” should contain a value of false if the collection is
moving, or true if the collection is static. A collection can have any number of sensors.

• At the next level is the "sensor" tag which has a single attribute, "kml". This kml attribute should

be assigned the boolean value "true" if the data associated with this sensor is going to be an image
overlay in Google Earth, or it should be assigned "false" if it is not an image to be overlaid in
Google Earth.

 12

• The next level below sensor contains "monitor" and "metadata" tags. The monitor tag is used to

describe from where the sensor will get its data. The attributes for monitor are "destURLPath",
"minimumInterval", and "mkcolQuery". These attributes describe how monitor behaves.

• Below monitor is the tag "url" which contains the url of the data that monitored.

• The "metadata" tag contains no attributes. Below this is "metasource" which is used to describe a

source of metadata. The metasource needs a "tag" and "url". Some special “tag” values are listed
below. A metadata source can also contain a “balloon” attribute which, if set to true enables a
description balloon to appear over the placemark corresponding to the collection’s location.

If the "kml" attribute is true, the following metasource tags are required:

• alt – the altitude value associated with the view altitude in Google Earth
• lat – the latitude value (decimal) associated with the view location in Google Earth.
• long - the longitude value (decimal) associated with the view location in Google Earth.
• heading – the heading value (decimal) associated with the view location in Google Earth.
• tilt - the tilt value (decimal) associated with the view location in Google Earth.
• range - the range value (decimal) associated with the view location in Google Earth.
• overlay-north – the location of the north edge of the image overlay in Google Earth.
• overlay-south - the location of the south edge of the image overlay in Google Earth.
• overlay-east - the location of the east edge of the image overlay in Google Earth.
• overlay-west - the location of the west edge of the image overlay in Google Earth.
• overlay-rotation – the rotation of the image overlay in Google Earth.

This section contains a skeleton of the schema with descriptions in the form of comments to
further describe the purpose of each item.

<collection name="" static=”” destURLPath=“”>
<sensor kml="">
 <monitor destName="" minimumInterval="" mkcolQuery="">
 <url> </url>
 </monitor>
 <metadata>

<metasource balloon=””>
 <tag> </tag>
 <channel> </channel>

</metasource>
</metadata>

</sensor>
</collection>

Generally speaking, choosing the types of sensors for a particular deployment depends on the domain of
the information being observed. That being the case, the primary data type would require metadata which
lends context to provide a more complete depiction of the monitoring field. Although this schema is used
with regards to image sensors, it was designed with the concerns of a general sensor web in mind.

 13

Performance

 Performance considerations were primarily with regard to data management. It was necessary to make
all attempts at minimizing network congestion by not transmitting redundant data over the constrained
link between sensor locations and the central server. Features such as Google Earth path building required
the appendage of new data onto a list of old data. To minimize link saturation, this path was built at the
central server tier by monitoring specific channels for changes as data is being retrieved from the
acquisition tier. This approach accomplishes the objective of efficiently utilizing link capacity while
maintaining temporal state information. However, by building path information at the central server tier
and constantly monitoring for newly acquired data, the central server must allocate more of its resources
in order to take on this added processing.

 However, regardless of the effectiveness of the strategies employed for efficient bandwidth utilization,
the single central server and the link it shares with the monitoring server remains the network traffic
bottleneck of this particular approach. Not only is all data being broadcasted over constrained links to this
central system, but all of the data processing, from caching and archiving multiple channels at a time to
servicing potentially multiple KML requests, is being carried out at this tier area as well.

 The RBNB mechanism is the essential data store which ties this entire system together. Since certain
metadata relationships can yield new information through additional analysis, under constrained network
conditions it may be desirable to postpone this additional processing to later tiers. It is therefore desirable
to interact with data as it moves from tier to tier. Specifically, the CSUS I-Scan Group recommends the
implementation of an event-driven mechanism for data processing between tiers, allowing the ability to
modify data upon arrival at the central caching location.

 14

Conclusion

 In summation, the project detailed in this paper has been an attempt to show the viability of network
cameras as imaging sensors in a geographically distributed imaging sensor web. The applications
designed to run at both the central server and data acquisition tiers where created to facilitate a network
testbed subject to connectivity constraints by efficiently defining and managing acquired data and their
respective relationships. A star topology architecture was employed to buffer data at a central location to
better its availability to client applications, such as Google Earth, over the Internet.

 Performance bottlenecks were identified as the bandwidth-constrained links between the various
distributed monitoring localities and the central server data repository, as well as the fact that most, if not
all, of the data processing occurs at this central server. Future investigation into the possibility of
introducing one or more intermediary data processing tiers into the architecture to provide computational
speedup might be warranted.

 The system described manages all stages of data processing from acquisition to end-user observation.
By defining and maintaining data-metadata relationships, context is preserved, yielding a more complete
depiction of the monitoring environment. Furthermore, the added approach of acquisition in near real-
time enables end-users to accumulate temporally-sensitive knowledge within a reasonable time frame.

 15

Acknowledgements

The I-Scan project was sponsored by NASA Dryden Flight Research Center and the AERO Institute
under Task Number 28, “Network-Enhanced Telemetry and Global-Reach Test Range Development.
Industry participants included Creare, Inc (Hanover, NH) and SemQuest, Inc (Colorado Springs, CO).

The CSUS I-Scan Group would like to thank Creare, Inc for the time and resources contributed to this
project, as well as the endless consultation regarding their RBNB middleware package. Furthermore, this
project would not have been possible without the funding provided by the Aero Institute (Palmdale, CA).
Finally, this project was conceived by coauthor and project sponsor Larry Freudinger. The group is truly
grateful for the opportunity afforded by him to engage in system research and development.

 16

References

[1] C. E. Sorenson, S. K. Yarbrough, L. C. Freudinger, P. T. Gonia, “Research Environment for
Vehicle Embedded Analysis on Linux,” Paper No. 03-11-04, Proceedings of the International
Telemetering Conference, Vol. 39, 20-23 October 2003, Las Vegas, Nevada. ISSN 1546-2188

[2] M. J. Miller; L. C. Freudinger, “A Web Compatible File Server for Measurement and Telemetry
Networks,” Paper No. 03-11-05, Proceedings of the International Telemetering Conference, Vol. 39, 20-
23 October 2003, Las Vegas, Nevada. ISSN 1546-2188

[3] A. Dietz, E. Friets, W. Finger, J. Bieszczad, M. Miller, L. Freudinger, “Online Distributed
Vehicle and Machinery Health Management,” Paper No. 03-04-04 Proceedings of the International
Telemetering Conference, Vol. 39, 20-23 October 2003, Las Vegas, Nevada. ISSN 1546-2188

[4] M. Miller, W. Baschnagel, J. Bieszczad, E. Friets, W. Finger, R. Kaszeta, J. Wilson, “Intelligent
Observation Study,” TM-2528 Final Report Task 1.5.2, Creare Inc., January 18, 2006

[5] M. Miller, W. Baschnagel, J. Bieszczad, E. Friets, W. Finger, R. Kaszeta, J. Wilson, “Intelligent
Observation Study Near Term Capabilities Demonstration,” TM-2528 Final Report Task 1.5.3, Creare
Inc., January 18, 2006

 17

